
The Researcher’s Guide to the Data Deluge:
Querying a Scientific Database in Just a Few Seconds

Martin L. Kersten, Stratos Idreos, Stefan Manegold, Erietta Liarou

CWI, Amsterdam, The Netherlands
{mk,idreos,manegold,erietta}@cwi.nl

ABSTRACT
There is a clear need for interactive exploration of extremely large
databases, especially in the area of scientific data management where
ingestion of multiple Terabytes on a daily basis is foreseen. Unfor-
tunately, current data management technology is not well-suited for
such overwhelming demands.

In light of these challenges, we should rethink some of the strict
requirements database systems adopted in the past. We envision
that next generation database systems should interpret queries by
their intent, rather than as a contract carved in stone for complete
and correct answers. The result set should aid the user in un-
derstanding the database’s content and provide guidance to con-
tinue the data exploration journey. A scientist can stepwise explore
deeper and deeper into the database, and stop when the result con-
tent and quality reaches his satisfaction point. At the same time,
response times should be close to instant such that they allow a
scientist to interact with the system and explore the data in a con-
textualized way.

Several research directions are carved out to realize this vision.
They range from engineering a novel database kernel where speed
rather than completeness is the first class citizen, up to refusing to
process a costly query in the first place, but providing advice on
how to reformulate it instead, or even providing alternatives the
system believes might be relevant for the exploration patterns ob-
served.

1. INTRODUCTION
The Challenge of Extremely Large Data Sets. Scientific data-

bases face an ingestion of Terabytes of data on a daily basis. This
data becomes useful information only after in-depth analysis us-
ing the methods deployed in science, i.e., validation of models and
induction of rules from observations. Even nowadays, scientific
groups already struggle with the basics, i.e., to store their data or
even to move it around, let alone to analyze it in an interactive
mode.

Database technology has evolved with a different paradigm in
mind. It mostly targeted financial applications, where correctness
and completeness are key, and where there is a vast amount of a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

priori knowledge to prepare the system for fast response. In sci-
entific databases though, none of this is true anymore. Other than
the vast amount of data to be processed, the users do not always
know exactly what they are looking for and they not always care
for a complete answer; it is mainly used for data exploration in
search for interesting patterns. In this paper, we revisit some of the
hitherto strict restrictions set in database system design and envi-
sion alternative research paths to handle the challenge of analyzing
extremely large scientific data sets.

Interactive Data Exploration. For example, consider the suc-
cess of web search engines. For a large part they rely on guiding the
user from his ill-phrased queries through successive refinement to
the web-pages of interest. Limited a priori knowledge is required.
The sample answers returned provide guidance to drill down chas-
ing individual links or to adjust the query terms. Recent approaches
in facet-based information retrieval are an attempt to further speed-
up the search by providing summary information.

Compare this ease of use with how database systems are queried.
It requires the user to learn a query language, know its database
schema, and control the amount of output being generated. Once a
query is submitted, the system will blindly obey the user’s orders
and do its utmost best to provide a complete and correct answer
as quickly as possible. It returns anything from an empty set to
the complete database. Exploration speed and effectiveness can be
improved by the user using database statistics, sampling, synopsis,
and prior knowledge. Pre-canned queries and materialized views
aid new users in finding their way in the query space.

The situation in scientific databases however, is even more com-
plicated, because they often contain complex observation data, e.g.,
sky images or seismograms, and little a priori knowledge exists.
The prime challenge is to find models that capture the essence of
this data at both a macro- and a micro-scale. Paraphrased, the an-
swer is in the database, but the Nobel-price winning query is still
unknown.

For example, consider the > 1 TB PhotoObj table in the Sloan
Digital Sky Survey with around 500 columns, most of which are
floating point numbers, and > 600 M rows. Scientific proof for
a hypothesis comes from finding data correlations, e.g., spatially
clustered objects with similar properties, and checking data ob-
tained from simulation of astrophysics phenomena in this database.
Such data exploration is the prime domain of data mining, where
statistical methods and learning algorithms are the predominant
tools being used. Unfortunately, finding new rules and patterns
works well only in high quality datasets, i.e., those that have un-
dergone a thorough quality assurance check. Outliers and noise are
often suppressed, while in science those can be the more interesting
parts to gain insight. For example, in recent years, detailed analysis
of the noise in seismograms revealed that some plates are actually



moving up and down, like a bed spring. Such results are found
by generating a hypothetical database state through simulation and
search for it in the collected (dirty) observations.

Vision. Next generation query processing engines should pro-
vide a much richer repertoire and easier to use querying techniques
to cope with the deluge of observational data in a resource limited
setting. Good is good enough as an answer, provided the journey
can be continued as long as the user remains interested.

In this short note, we propose a few alternative system design
paths which if realized can significantly improve the user experi-
ence in exploring scientific databases. To set the stage, consider the
simplistic SkyServer query Q: select * from PhotoObj. The Sky-
Server query logs illustrate that such generic queries are actually
being used. Asking for a sizable part of the database may also result
from accidental erroneous modification of pre-canned queries us-
ing too broad parameter ranges or hitting a highly dense area in the
database. Running query Q against the 4 TB SkyServer database
held in Microsoft SQL Server or MonetDB nowadays would return
a completely incomprehensible answer of millions of rows with
floating point numbers, only cut off by the page-size limit set in the
reporting tools and the 10 minute time out for query processing. Its
complete answer may even take days to produce. The situation be-
comes worse if queries start to return only empty sets. Clearly, this
would not be the user’s intent in most situations. Instead, a more
informative answer should be given. But how can we achieve this?

The underlying cause for a long running query with unwanted
large (or empty) result set is the user’s “ignorance”. The user sim-
ply can not a priori know how to phrase the query in such a way
that it is both fast to process with limited resources and still pro-
duces informative answers. It is this lack of providence that should
be addressed, much like information retrieval techniques in search
aim for user satisfaction, despite the lack of completeness and cor-
rectness.

In the remainder of this paper we charter a visionary landscape
of potential ground-breaking research. In particular, we consider
five concrete tracks into this open space:

• One-minute database kernels for real-time performance.
• Multi-scale query processing for gradual exploration.
• Result-set post processing for conveying meaningful data.
• Query morphing to adjust for proximity results.
• Query alternatives to cope with lack of providence.

There does not exist a free lunch in science either. Therefore, to
make this vision become a reality, the user should at least identify
the budget he is willing to spend on query processing. For the re-
mainder we assume his waiting time for a response to be the critical
factor, but result quality or energy consumption can also be consid-
ered budgetary items to aim for. Like search engines the challenge
is what can the system provide within T seconds? A rethinking
of the database system architecture along this line and a possible
overhaul of major portions may be required.

The remainder of the paper provides a short outlook on the sys-
tem we have in mind. We focus on the total picture of a new system
architecture for scientific data exploration, built on the strong foun-
dation of database technology.

2. ONE-MINUTE DB KERNELS
One of the prime impediments to fast data exploration is the

query execution focus on correct and complete result sets, i.e., the
semantics of SQL presupposes that the user knows exactly what
he needs from the system. The design and implementation of the
query optimizer, execution engine, and storage engine are focused

towards this goal, helped by proper database indexing, partitioning,
data distribution, and parallel execution. That is, correctness and
completeness are first class citizens in modern DB kernels. This
means that when the system needs to perform a few hard unavoid-
able steps (e.g., random access, I/O, etc.), it is designed to perform
them such that it can produce the complete and correct results. But
is it needed in the case of scientific databases with Petabytes of
data?

If the user accidentally produces a large result set, then a sam-
ple might be more informative and more feasible. Unfortunately,
such a sample depends on the data distribution, the correlations,
and data clustering in the database and the query result set. And
taking a sample can still cause significant performance degradation
that surface only at run time. An experienced user would resort
to querying a pre-computed database summary first. For scien-
tific databases though, even creating such summaries on the daily
stream of Terabytes becomes a challenge on its own.

The first proposal is to address the problem at its root; we en-
vision one-minute database kernels that have rapid reactions on
user’s requests. Such a kernel differs from conventional kernels
by trying to identify and avoid performance degradation points on-
the-fly and to answer part of the query within strict time bounds, but
also without changing the query focus. Its execution plan should be
organized such that a (non-empty) answer can be produced within
T seconds.

Although such a plan has a lot in common with a plan produced
by a conventional cost-based optimizer, it may differ in execution
order, it may not let all relational operators run to completion, or
it may even need new kinds of operators. In other words, a one-
minute kernel sacrifices correctness and completeness for perfor-
mance. The goal is to provide a quick and fully interactive gateway
to the data until the user has formulated a clear view of what he is
really searching for, i.e., it is meant as the first part of the explo-
ration process.

Let us indicate a few research directions. For example, large
scans over base tables are bound by the I/O capacity of the under-
lying system hardware. For a given T this puts an upper-bound on
the total amount of data that can be read from/written to the per-
sistent store. Moreover, database queries often contain blocking
operations that lead to a pipeline stall or spilling large intermedi-
ates back to the disks. They should be avoided, or replaced by less
accurate versions. To illustrate, when building a hash table during
a join, we can choose to not insert certain elements such as to keep
the size of the hash table within the memory or within the cache.
Similarly, while probing the hash table we may choose not to fol-
low long linked lists to avoid cache misses.

In addition, very often during a plan we need to sort large sets of
rowIDs to guarantee sequential data access. Those can be replaced
by a cheaper clustering method or we can refrain from data access
outside the cache. Likewise, operations dealing with building aux-
iliary structures over the complete columns/tables, can be broken
up into their piecewise construction. Building just enough within
T to make progress in finding an answer. If T is really short, e.g., a
few seconds, the plan may actually be driven from what is already
cached in the memory buffers. In a modern database server, it is
just too expensive to free up several GB of dirty memory buffers
before a new query can start. Instead, its memory content should be
used in the most effective way. In the remaining time the memory
(buffer) content can be selectively replaced by cheap, yet promis-
ing, blocks from the disks. With a time budget for processing, the
execution engine might either freeze individual operators when the
budget has been depleted, or it might replace expensive algorithms
with approximate or cheaper alternatives.



These ideas extends from high level design choices in database
operators and algorithms all the way to lower level (hardware con-
scious) implementation details. For example, during any database
algorithm if we reach the case where we need to extend, say, an ar-
ray in a column-store with a realloc, an algorithm in the one minute
kernel may choose to skip this step if it will cause a complete copy
of the original array.

This sketch is just the tip of the ice berg, i.e., numerous examples
and variations can be conceived. The key challenge is to design a
system architecture where budget distribution can be dynamically
steered in such a way that the query still produces an informative re-
sult set. At first sight, traditional Volcano-style processing schemes
may seem to come a long way to provide this functionality. Until
one actually would go in and consider the administrative burden to
control global scheduling, blocking operators and incremental in-
dexing. Aside from a tedious large-scale (re-)engineering effort to
build a kernel on this assumption, major research questions arise.
For example: How is the budget spread over the individual opera-
tors? What actions are database operators allowed to take to stay
within the budget? How to harvest the system state produced by
previous queries? How to replace the relational operators and in-
dex constructors with incremental versions?

3. MULTI-SCALE QUERIES
Our second proposal towards fast exploration of large datasets is

to aim for a staging scheme, where stepwise a larger portion of the
database becomes the query target. As the user becomes more and
more confident on the direction of his exploration he is willing to
analyze more data and spend more of his budget.

Most large scale scientific databases are a priori partitioned, and
the database fragments directly correlate with an external file for-
mat held in a repository. For example, the major seismic events are
kept in a repository of > 3∗106 files. Similarly, data gathered with
the Large Hadron Collider at CERN needs huge file repositories
of > 108 files, and also the database design for the Large Synoptic
Survey Telescope expects millions of large database partitions.

In these situations, we can rethink the cost-based optimizers,
deployed in contemporary systems, to exploit this inherent parti-
tioning. Instead of strictly finding the optimal plan assuming the
complete database, we can break the query into two pieces Q =
Q1∪Q2, such that one piece can be evaluated within the bounds of
the user budget using a limited number of the total partitions/files.
This technique can be applied recursively, while staging can be ap-
plied both horizontally and vertically. Even simple solutions can
provide very useful functionality. For example, in a column store,
where tuple reconstruction is an expensive component, simply lim-
iting the number of columns in the target list is a good first step. If
needed, the user can always ask for more columns and the system
has to keep track of the proper intermediates to quickly resume pro-
cessing. Keeping track of what portions have been touched makes
it possible to continue afterwards, and even give a more accurate
prediction on the total query execution time.

The key challenge is to find the cost-metrics and database statis-
tics that allow the system to break queries into multiple steps. Opti-
mization techniques may focus on preparatory subqueries and pass-
ing intermediates between the stages.

4. RESULT-SET POST PROCESSING
For decades, database designers have largely ignored the poten-

tials of post-processing a result set. At best, the user can steer sort-
ing the results or limit the number of rows to be returned. But, is
this all we can do? And should we obey a sorting over hundreds of

TB? To provide even more informative answers may call for step-
ping even further away from the target expression in a SQL query.
The guiding example query Q with millions of rows could perhaps
be compressed into a more meaningful way. Straightforward com-
pression in the SkyServer context may not work, for most of the
data consists of hard-to-compress floating point sequences.

But, there are many statistical techniques that can be processed
in linear time over the result set. For that, the result set is not shown
to the user as is, but passed through a straightforward statistics post-
processor to derive informative results. Min, max, and mean values
for all attributes are the first that come to mind. For larger target
lists, the data distribution may be further elicited by selective sam-
pling. Histograms could also be constructed in such a way that the
number of bins shown fits the screen, while the bounds are derived
based on the value deviation within each bin.

A minimalistic post-processing action is to look at the result set
and sample it in such a way that the contours of the result set value
distribution become visible. It is conceivable that two tuples suffice
to express the min-max values for all attributes. This information
aids the user in cutting out portions for drill down.

Post-processing the result set should ideally retain their struc-
ture, otherwise they might confuse front-end applications expecting
a certain number of columns as part of their JDBC interaction pro-
tocol. However, the standard graphical client interfaces could be
informed through a simple protocol on the result set structure. Tool
tips can be provided on the actions taken for further clarification.

Of course, both query processing and result set processing should
be handled within T . This further complicates the query optimizer,
because it has to also estimate the post-processing time or piggy-
back information gathering in the critical path of query execution.

5. QUERY MORPHING
The directions seen so far target performance improvements re-

garding the queries posed. In a science exploratory setting though
even choosing the proper queries becomes a challenge. Even with a
time-aware kernel and data exploration with multi-stage querying,
badly chosen queries will still significantly hinder data exploration.
Perhaps they are formulated wrongly, or they get stuck in a part of
the database where no satisfying results exist.

Figure 1: An example of query morphing.
For this recurring situation, we introduce the notion of query

morphing as an integral part of query evaluation. It works as fol-
lows, the user gives a starting query Q and most of the effort T is
spent on finding the “best” answer for Q. But a small portion is set
aside for the following exploratory step. The query is syntactically
adjusted to create variations Qi, i.e., with a small edit distance from
Q. The process of query morphing is visualized on the left part
of the above figure. The user’s original request returns the result
set depicted by the small red circle. However, the database kernel
grabs the chance to explore a wider query/data spectrum in paral-
lel, providing additional results for queries that belong in the close
area, surrounding the original request. The arrows that start from
the red circle indicate this edit area in our example. This way the
user also receives the orange elliptic query results that correspond
to variations of his original request. In the right part of above figure,



we see that the user may as a next step decide to shift his interest
towards another query result, inspired by the result variations. A
new query area now surrounds the user’s request, including both
past and new variations of the query.

Several kinds of adjustments can be considered to create the
query variations, e.g., addition/dropping of predicate terms, vary-
ing constants, widening constants into ranges, joining with auxil-
iary tables through foreign key relationships, etc. The kind of ad-
justments can be statistically driven from queries ran in the past, or
exploitation of database statistics gathered so far, or even cached
past (intermediate) results. Since we have already spent part of our
time on processing Q, the intermediates produced along the way
can also help to achieve cheap evaluation of Qi.

The approach sketched aligns to proximity-based query process-
ing, but it is generalized to be driven by the query edit distance
in combination with statistics and re-use of intermediates. Query
morphing can be realized with major adjustments to the query opti-
mizer, because it is the single place where normalized edit distances
can be easily applied. It can also use the plan generated for Q to
derive the morphed ones. The ultimate goal would be that morph-
ing the query pulls it in a direction where information is available
at low cost. In the ideal case, it becomes even possible to spend all
time T on morphed queries.

6. QUERIES AS ANSWERS
No matter how well we deploy the techniques sketched so far,

they still do not address the user’s lack of knowledge about the
data. With huge data sets arriving on a daily basis, scientists do not
always have a clear view on the data characteristics or even what
they are looking for.

It seems prudent to propose that the database system itself can
provide starting points and guidance for data exploration; instead
of returning results for a random or badly formulated query, the
system can return query suggestions for more effective exploration.

Compared to query morphing discussed before, here the system
returns interesting or popular queries that are believed to produce
meaningful result sets. In the case of query morphing, the system
takes an opportunistic stance and automatically returns auxiliary
results around the area of the user’s interest that happen to be col-
lected at reasonable cost.

Assume a query with an excessive time to execute, and even tens
of continuation steps, e.g., the estimated response time is > 27 T or
the result set > 42 % of the database. In this situation, the system
might simply “refuse” the query and instead call for more precision
from the user. Every refused query should lead to an advisory list
of query alternatives with an indication on how large their result
set would be when run within T . For example, the advisory list for
query Q introduced in Section 1 could be:

-- Q1: Using the time budget. (36291322 tuples)
SELECT ra, dec, band1, intensity1, type
FROM PhotoObj;

-- Q2: Using data statistics. (879300 tuples)
SELECT * FROM PhotoObj
WHERE ra BETWEEN 53 AND 54
AND dec BETWEEN 80 AND 82;

-- Q3: Using query statistics. (899 tuples)
SELECT * FROM PhotoObj
WHERE ra BETWEEN 53 AND 54
AND dec BETWEEN 80 AND 82
AND distance(ra,dec,radius) < 10;

In essence, the original query Q says “tell me everything you
know about table PhotoObj”. This is naturally a very expensive
operation over Terabytes of data. On the other hand, the advi-
sory query Q1 illustrates that only a small portion of the persistent
database can be retrieved within T seconds. Q2 shows a query carv-
ing a smaller region of the sky (from the SkyServer logs it is known
that the positional lookups are the most frequently executed). Q3
refines it further to a manageable subset.

There are two crucial research challenges here. First, we should
be able to identify “bad” or “wrongly formulated” queries. Second,
we need to identify “interesting” queries to return as an answer.

For the first part, a bad query can be identified by the optimizer
provided good statistical information is available. In case of scien-
tific databases though, even creating such statistics becomes a huge
challenge due to the massive data sets arriving on a daily basis.
Instead, we need mechanisms to on-the-fly detect bad, i.e., very ex-
pensive queries, and cancel or pause their execution. The user can
then provide feedback on how to proceed, e.g., resume execution
of the current query or continue with one of the queries in the ad-
visory list. An expensive query can be detected more easily at run
time due to the more accurate information, i.e., intermediate car-
dinalities, selectivities, etc. Another option is that query execution
simply pauses when the user budget expires or the user can request
an advisory query list immediately without even posing a query.

For the second part, there are several ways to aid in creating the
query advisory list. For example, for scientific applications such as
the SkyServer, there exist traces of millions of past queries. Based
on such query logs, we can derive a set of queries, which are used
frequently, or for which the users have provided a positive feed-
back, or whose result set is expected to cover part of the original
query. The latter is, of course, hindered by the limitations to derive
an expression subsumption relationship. However, for exploratory
scenarios guidance rather than precision is more valuable.

To further improve the response, we probably need an enriched
vocabulary. For example, the SkyServer database comes with sev-
eral tens of user defined functions that encode astronomical con-
cepts. The user experience would improve if a system could ex-
ploit this set in its suggested alternatives. It could “pollute” a query
using a weighted sampling over the domain-specific set of user de-
fined functions and exploit a semantic web -like interlinking to aid
the user in understanding the implications of using them.

7. SUMMARY
In this short vision paper, we have shown that there are at least

five different directions where the user experience in querying a sci-
entific database can be significantly improved. Directions geared at
rebuilding a database kernel better suited for incremental process-
ing, stepwise multi-scale query processing to drill down into the
haystack, straightforward statistical analysis and data mining over
result sets for summaries, patching queries for proximity, and the
extreme approach to answer a query with just a set of alternative
queries. Scientific progress in these areas does not necessarily re-
quire starting from scratch, but a different viewpoint on how to
use/adapt the algorithms and techniques we know already.

8. ACKNOWLEDGMENTS
Many researchers have inspired us in describing the challenges

identified here. Their work on query processing, approximate query
processing, cache conscious algorithms and so many other areas of
research in the database field formed the stepping stones to form
the current vision. Attribution to only a few would not do justice to
the database research community at large.


